
pyIAST Documentation
Release 0.0.0

Cory M. Simon

February 18, 2016

Contents

1 Installation 5

2 New to Python? 7

3 pyIAST tutorial 9
3.1 Import the pure-component isotherm data . 9
3.2 Construct pure-component isotherm objects . 10
3.3 Peform an IAST calculation . 12
3.4 Reverse IAST calculation . 12

4 Theory 13

5 Tests 15
5.1 Methane/ethane mixture test . 15
5.2 Isotherm fitting tests . 15
5.3 Competitive Langmuir adsorption . 15

6 Class documentation and details 17

7 Indices and tables 23

Python Module Index 25

i

ii

pyIAST Documentation, Release 0.0.0

This Python package, pyIAST, predicts mixed-gas adsorption isotherms from a set of pure-component gas adsorption
isotherms in a nanoporous material using Ideal Adsorbed Solution Theory (IAST).

pyIAST characterizes a pure-component adsorption isotherm from a set of simulated or experimental data points by:

1. fitting an analytical model to the data [e.g., Langmuir, quadratic, BET, Dual-site Langmuir, Henry’s law, ap-
proximated Temkin isotherm].

2. linearly interpolating the data.

Then, pyIAST performs IAST calculations to predict the mixed-gas adsorption isotherms on the basis of these pure-
component adsorption isotherm characterizations.

pyIAST can handle an arbitrary number of components.

Please see our article for theoretical details and consider citing our article if you used pyIAST in your research:

C. Simon, B. Smit, M. Haranczyk. pyIAST: Ideal Adsorbed Solution Theory (IAST) Python Package.
Computer Physics Communications. (2015)

For example, consider that we have pure-component methane and ethane adsorption isotherms in metal-organic frame-
work IRMOF-1 at 298 K, shown in Fig. 1.

Fig. 1: Figure 1. Pure-component methane and ethane adsorption isotherms – the amount of gas adsorbed as a
function of pressure– in metal-organic framework IRMOF-1. Simulated data.

Using the pure-component isotherm data in Fig. 1, pyIAST can predict the methane and ethane uptake in IRMOF-1 in
the presence of a mixture of ethane and methane at 298 K under a variety of compositions. For example, for a mixture
at 65.0 bar, Fig. 2 shows that the mixed-gas adsorption isotherms in IRMOF-1 predicted by pyIAST (lines) agree with
binary component Grand-canonical Monte Carlo simulations (points).

Contents 1

https://github.com/CorySimon/pyIAST

pyIAST Documentation, Release 0.0.0

Fig. 2: Figure 2. Methane and ethane adsorption in IRMOF-1 in the presence of a mixture of methane and ethane
at 65.0 bar and 298 K. The x-axis shows the composition of ethane in the mixture. The data points are from binary
grand-canonical Monte Carlo simulations; the lines are from pyIAST.

2 Contents

pyIAST Documentation, Release 0.0.0

To ask a question, request an additional feature, report a bug, or suggest an improvement, submit an issue on Github
or discuss on Gitter.

Contents 3

https://github.com/CorySimon/pyIAST
https://gitter.im/CorySimon/pyIAST?

pyIAST Documentation, Release 0.0.0

4 Contents

CHAPTER 1

Installation

To install pyIAST, use the Python package manager pip:

sudo pip install pyiast

pyIAST runs on Python 2.6 and 2.7.

As an alternative method to install pyIAST, clone the repository on Github. cd into the main directory pyIAST and run
the setup.py script in the terminal:

sudo python setup.py install

If on Windows, run the setup file from a command prompt (Start –> Accessories):

setup.py install

5

https://pypi.python.org/pypi/pip?
https://github.com/CorySimon/pyIAST

pyIAST Documentation, Release 0.0.0

6 Chapter 1. Installation

CHAPTER 2

New to Python?

If new to Python, I highly recommend working in the IPython Notebook; test scripts and tutorials for this code are
written in IPython Notebooks. The instructions for getting started with Python for scientific computing are here.

7

http://ipython.org/notebook.html
http://ipython.org/install.html

pyIAST Documentation, Release 0.0.0

8 Chapter 2. New to Python?

CHAPTER 3

pyIAST tutorial

For this tutorial on pyIAST, enter the /test directory of pyIAST. While you can type this code into the Python shell, I
highly recommend instead opening an IPython Notebook.

First, import pyIAST into Python after installation.

import pyiast

For our tutorial, we have the pure-component methane and ethane adsorption isotherm data for metal-organic frame-
work IRMOF-1 in Fig 1. We seek to predict the methane and ethane uptake in the presence of a binary mixture of
methane and ethane in IRMOF-1 at the same temperature. As an example for this tutorial, we seek to predict the
methane and ethane uptake of IRMOF-1 in the presence a 5/95 mol % ethane/methane mixture at a total pressure of
65.0 bar and 298 K.

3.1 Import the pure-component isotherm data

First, we load the pure-component isotherm data into Python so we can pass it into pyIAST. The data in Fig. 1 (from
single component grand-canonical Monte Carlo simulations) are present in the CSV files:

• IRMOF-1_ethane_isotherm_298K.csv

• IRMOF-1_methane_isotherm_298K.csv

To import this data into Python, use the Pandas package (documentation for Pandas). The following code will return
a Pandas DataFrame instance, which is useful for storing and manipulating tabular data.

import pandas as pd
df_ch4 = pd.read_csv("IRMOF-1_methane_isotherm_298K.csv")
df_ch3ch3 = pd.read_csv("IRMOF-1_ethane_isotherm_298K.csv")

You can check that your data has loaded correctly by looking at the head of the DataFrame:

df_ch4.head()

The units for pressure and loading in both DataFrames must be consistent; loading of gas must be in a molar quantity
for IAST to apply (e.g. mmol/g or mmol/cm3). pyIAST will then work with these units throughout.

To load data into a Pandas DataFrame that is not in the CSV format, see the documentation for Pandas. Pandas is
generally a very useful tool for manipulating data. See the 10 Minutes to pandas tutorial.

9

http://ipython.org/notebook.html
https://en.wikipedia.org/wiki/Comma-separated_values
http://pandas.pydata.org/
http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe
http://pandas.pydata.org/
http://pandas.pydata.org/pandas-docs/stable/10min.html

pyIAST Documentation, Release 0.0.0

3.2 Construct pure-component isotherm objects

Next, we use pyIAST to translate the pure-component methane and ethane adsorption isotherm data into a model,
which we will subsequently feed into pyIAST’s IAST calculator.

There are two different pure-component isotherm data characterizations in pyIAST:

1. pyiast.ModelIsotherm

2. pyiast.InterpolatorIsotherm

In the first, an analytical model (e.g. Langmuir) is fit to the data, and the isotherm thereafter is characterized by this
fitted analytical model. In the second, pyIAST linearly interpolates the data and uses numerical quadrature to compute
the spreading pressure, which is an integration involving the isotherm for IAST calculations.

Note that pyIAST allows you to mix isotherm models for an IAST calculation (e.g. use Langmuir for methane but
interpolate for ethane).

For both ModelIsotherm and InterpolatorIsotherm, we construct the instance by passing the Pandas DataFrame with
the pure-component adsorption isotherm data and the names of the columns that correspond to the loading and pres-
sure.

3.2.1 ModelIsotherm

Here, in the construction of the instance of a ModelIsotherm, the data fitting to the analytical model is done under
the hood. As an example, to construct a ModelIsotherm using the Langmuir adsorption model for methane (see Fig.
1), we pass the DataFrame df_ch4 and the names (keys) of the columns that correspond to the loading and pressure.
In IRMOF-1_methane_isotherm_298K.csv, the name of the loading and pressure column is Loading(mmol/g) and
Pressure(bar), respectively. (e.g., in Pandas, df_ch4[’Pressure(bar)’] will return the column corresponding to the
pressure.)

ch4_isotherm = pyiast.ModelIsotherm(df_ch4,
loading_key="Loading(mmol/g)",
pressure_key="Pressure(bar)",
model="Langmuir")

A Langmuir model has been fit to the data in df_ch4. You can access a dictionary of the model parameters identified
by least squares fitting to the data by:

ch4_isotherm.params # dictionary of identified parameters
{'K': 0.021312451202830915, 'M': 29.208535025975138}

or print them:

ch4_isotherm.print_params() # print parameters
Langmuir identified model parameters:
K = 0.021312
M = 29.208535
RMSE = 0.270928487851

pyIAST will plot the isotherm data points and resuling model fit by:

pyiast.plot_isotherm(ch3ch3_isotherm)

To predict the loading at a new pressure using the identified model, for example at 40.0 bar, one can call:

ch4_isotherm.loading(40.0) # returns predicted loading at 40 bar.
13.441427980586377 (same units as in df_ch4, mmol/g)

10 Chapter 3. pyIAST tutorial

pyIAST Documentation, Release 0.0.0

or the reduced spreading pressure (used for IAST calculations) via:

ch4_isotherm.spreading_pressure(40.0)
18.008092685521699 (mmol/g)

pyIAST fits other models (see the list pyiast._MODELS for available models), for example, the quadratic isotherm
model, by passing model=”Quadratic” during the construction of the ModelIsotherm instance.

A nonlinear data-fitting routine is used in pyIAST to fit the model parameters to the data. pyIAST uses heuristics for
starting guesses for these model parameters. But, you can pass your own parameter guesses in the form of a dictionary
param_guess when you construct the instance. For example, to use 25.0 as a starting guess for the M parameter in the
Langmuir model:

ch4_isotherm = pyiast.ModelIsotherm(df_ch4,
loading_key="Loading(mmol/g)",
pressure_key="Pressure(bar)",
model="Langmuir",
param_guess={"M": 25.0})

You may need to pass your own starting guess for the parameters if the default guesses in pyIAST were not good
enough for convergence when solving the nonlinear equations of IAST. You can see the naming convention for model
parameters in pyIAST in the dictionary pyiast._MODEL_PARAMS as well as in the documentation for the Mod-
elIsotherm class at the end of this page. Further, you can change the method used to solve the IAST equations by
passing e.g. optimization_method=”Powell” if you encounter convergence problems. For a list of supported opti-
mization methods, see the Scipy website.

3.2.2 InterpolatorIsotherm

The InterpolatorIsotherm, where pyIAST linearly interpolates the isotherm data, is constructed very similary to the
ModelIsotherm, but now there is not a need to pass a string model to indicate which model to use.

ch4_isotherm = pyiast.InterpolatorIsotherm(df_ch4,
loading_key="Loading(mmol/g)",
pressure_key="Pressure(bar)")

This InterpolatorIsotherm object behaves analogously to the ModelIsotherm; for example ch4_isotherm.loading(40.0)
returns the loading at 40.0 bar via linear interpolation and pyiast.plot_isotherm(ch4_isotherm) plots the isotherm and
linear interpolation. When we attempt to extrapolate beyond the data point with the highest pressure, the ch4_isotherm
above will throw an exception.

The InterpolatorIsotherm has an additional, optional argument fill_value that tells us what loading to assume when
we attempt to extrapolate beyond the highest pressure observed in the pure-component isotherm data. For example, if
the isotherm looks reasonably saturated, we can assume that the loading at the highest pressure point is equal to the
largest loading in the data:

ch4_isotherm = pyiast.InterpolatorIsotherm(df_ch4,
loading_key="Loading(mmol/g)",
pressure_key="Pressure(bar)",
fill_value=df_ch4['Loading(mmol/g)'].max())

ch4_isotherm.loading(500.0) # returns 66.739250428032904

3.2.3 Should I use ModelIsotherm or InterpolatorIsotherm?

See the discussion in our manuscript:

3. Simon, B. Smit, M. Haranczyk. pyIAST: Ideal Adsorbed Solution Theory (IAST) Python Package. Computer
Physics Communications. (2015)

3.2. Construct pure-component isotherm objects 11

http://docs.scipy.org/doc/scipy/reference/optimize.html#module-scipy.optimize

pyIAST Documentation, Release 0.0.0

3.3 Peform an IAST calculation

Given the pure-component isotherm characterizations constructed with pyIAST, we now illustrate how to use pyIAST
to predict gas uptake when the material is in equilibrium with a mixture of gases. We have ch4_isotherm as above and
an analogously constructed pure-component ethane adsorption isotherm object ch3ch3_isotherm.

As an example, we seek the loading in the presence of a 5/95 mol% ethane/methane mixture at a temperature of 298
K [the same temperature as the pure-component isotherms] and a total pressure of 65.0 bar. The function pyiast.iast()
takes as input the partial pressures of the gases in the mixture and a list of the pure-component isotherms characterized
by pyIAST. For convenience, we define the total pressure first as total_pressure and the gas phase mole fractions as y.

total_pressure = 65.0 # total pressure (bar)
y = np.array([0.05, 0.95]) # gas mole fractions
partial pressures are now P_total * y
Perform IAST calculation
q = pyiast.iast(total_pressure * y, [ch3ch3_isotherm, ch4_isotherm], verboseflag=True)
returns q = array([4.4612935, 13.86364776])

The function pyiast.iast() returns q, an array of component loadings at these mixture conditions predicted by IAST.
Since we passed the ethane partial pressures and isotherm first, entry 0 will correspond to ethane; entry 1 will cor-
respond to methane. The flag verboseflag will print details of the IAST calculation. When the result required an
extrapolation of the pressure beyond the highest pressure observed in the data, pyIAST will print a warning to the user.
It may be necessary to collect pure-component isotherm data at higher pressures for the conditions in which you are
interested (see our manuscript).

3.4 Reverse IAST calculation

In reverse IAST, we specify the mole fractions of gas in the adsorbed phase and the total bulk gas pressure, then
calculate the bulk gas composition that yields these adsorbed mole fractions. This is useful e.g. in catalysis, where
one seeks to control the composition of gas adsorbed in the material.

As an example, we seek the bulk gas composition [at 298 K, the same temperature as the pure-component isotherms]
that will yield a 20/80 mol% ethane/methane mixture in the adsorbed phase at a total bulk gas pressure of 65.0. The
code for this is:

total_pressure = 65.0 # total pressure (bar)
x = [0.2, 0.8] # list/array of desired mole fractions in adsorbed phase
y, q = pyiast.reverse_iast(x, total_pressure, [ch3ch3_isotherm, ch4_isotherm])
returns (array([0.03911984, 0.96088016]), array([3.62944368, 14.51777472]))

which will return y, the required bulk gas phase mole fractions, and q, an array of component loadings at these mixture
conditions predicted by IAST. Entry 0 will correspond to ethane; entry 1 will correspond to methane.

A variant of this tutorial, where we generate Fig. 2, is available in this IPython Notebook.

12 Chapter 3. pyIAST tutorial

https://github.com/CorySimon/pyIAST/blob/master/test/Methane%20and%20ethane%20test.ipynb

CHAPTER 4

Theory

Ideal Adsorbed Solution Theory was developed by Myers and Prausnitz:

A. L. Myers and J. M. Prausnitz (1965). Thermodynamics of mixed-gas adsorption. AIChE Journal,
11(1), 121-127.

In our IAST calculations, we follow the method to solve the equations outlined in the more accessible reference:

A. Tarafder and M. Mazzotti. A method for deriving explicit binary isotherms obeying ideal adsorbed
solution theory. Chem. Eng. Technol. 2012, 35, No. 1, 102-108.

We provide an accessible derivation of IAST and discuss practical issues in applying IAST in our manuscript:

C. Simon, B. Smit, M. Haranczyk. pyIAST: Ideal Adsorbed Solution Theory (IAST) Python Package.
Computer Physics Communications. (2015)

13

pyIAST Documentation, Release 0.0.0

14 Chapter 4. Theory

CHAPTER 5

Tests

In the /test directory, you will find IPython Notebooks that test pyIAST in various ways.

5.1 Methane/ethane mixture test

test/Methane and ethane test.ipynb

This IPython Notebook compares pyIAST calculations to binary component grand-canonical Monte Carlo simulations
for a methane/ethane mixture. This notebook reproduces Fig. 2, which confirms that pyIAST yields component
loadings consistent with the binary grand-canonical Monte Carlo simulations.

5.2 Isotherm fitting tests

test/Isotherm tests.ipynb

This IPython Notebook generates synthetic data for each isotherm model, stores the data in a Pandas DataFrame, and
uses pyIAST to construct a ModelIsotherm using this data; this notebook checks for consistency between the identified
model parameters and those used to generate the synthetic data. This ensures that the data fitting routine in pyIAST is
behaving correctly.

5.3 Competitive Langmuir adsorption

test/Test IAST for Langmuir case.ipynb

In that case that the pure-component adsorption isotherm 𝐿𝑖(𝑃) for species 𝑖 follows a Langmuir isotherm with
saturation loading 𝑀 and Langmuir constant 𝐾𝑖:

𝐿𝑖(𝑃) = 𝑀
𝐾𝑖𝑃

1 + 𝐾𝑖𝑃
,

i.e. equal saturation loadings among all components, it follows from IAST that the mixed gas adsorption isotherm
𝑁𝑖(𝑝𝑖) follows the competitive Langmuir model:

𝑁𝑖(𝑝𝑖) = 𝑀
𝐾𝑖𝑝𝑖

1 +
∑︀

𝑗 𝐾𝑗𝑝𝑗
.

In this IPython Notebook, we generate synthetic data that follows three Langmuir adsorption isotherm models with the
same saturation loading but different Langmuir constants. We then use pyIAST to predict the mixed gas adsorption
isotherm and check that it is consistent with the competitive Langmuir adsorption model above.

15

pyIAST Documentation, Release 0.0.0

16 Chapter 5. Tests

CHAPTER 6

Class documentation and details

This module contains objects to characterize the pure-component adsorption isotherms from experimental or simulated
data. These will be fed into the IAST functions in pyiast.py.

class isotherms.ModelIsotherm(df, loading_key=None, pressure_key=None, model=None,
param_guess=None, optimization_method=’Nelder-Mead’)

Class to characterize pure-component isotherm data with an analytical model. Data fitting is done during in-
stantiation.

Models supported are as follows. Here, 𝐿 is the gas uptake, 𝑃 is pressure (fugacity technically).

•Langmuir isotherm model

𝐿(𝑃) = 𝑀
𝐾𝑃

1 + 𝐾𝑃
,

•Quadratic isotherm model

𝐿(𝑃) = 𝑀
(𝐾𝑎 + 2𝐾𝑏𝑃)𝑃

1 + 𝐾𝑎𝑃 + 𝐾𝑏𝑃 2

•Brunauer-Emmett-Teller (BET) adsorption isotherm

𝐿(𝑃) = 𝑀
𝐾𝐴𝑃

(1 −𝐾𝐵𝑃)(1 −𝐾𝐵𝑃 + 𝐾𝐴𝑃)

•Dual-site Langmuir (DSLangmuir) adsorption isotherm

𝐿(𝑃) = 𝑀1
𝐾1𝑃

1 + 𝐾1𝑃
+ 𝑀2

𝐾2𝑃

1 + 𝐾2𝑃

•Asymptotic approximation to the Temkin Isotherm

(see DOI: 10.1039/C3CP55039G)

𝐿(𝑃) = 𝑀
𝐾𝑃

1 + 𝐾𝑃
+ 𝑀𝜃(

𝐾𝑃

1 + 𝐾𝑃
)2(

𝐾𝑃

1 + 𝐾𝑃
− 1)

•Henry’s law. Only use if your data is linear, and do not necessarily trust IAST results from Henry’s law
if the result required an extrapolation of your data; Henry’s law is unrealistic because the adsorption sites
will saturate at higher pressures.

𝐿(𝑃) = 𝐾𝐻𝑃

17

pyIAST Documentation, Release 0.0.0

__init__(df, loading_key=None, pressure_key=None, model=None, param_guess=None,
optimization_method=’Nelder-Mead’)

Instantiation. A ModelIsotherm class is instantiated by passing it the pure-component adsorption isotherm
in the form of a Pandas DataFrame. The least squares data fitting is done here.

Parameters

• df – DataFrame pure-component adsorption isotherm data

• loading_key – String key for loading column in df

• pressure_key – String key for pressure column in df

• param_guess – Dict starting guess for model parameters in the data fitting routine

• optimization_method – String method in SciPy mini-
mization function to use in fitting model to data. See
[here](http://docs.scipy.org/doc/scipy/reference/optimize.html#module-scipy.optimize).

Returns self

Return type ModelIsotherm

df = None
Pandas DataFrame on which isotherm was fit

loading(pressure)
Given stored model parameters, compute loading at pressure P.

Parameters pressure – Float or Array pressure (in corresponding units as df in instantiation)

Returns predicted loading at pressure P (in corresponding units as df in instantiation) using fitted
model params in self.params.

Return type Float or Array

loading_key = None
name of column in df that contains loading

model = None
Name of analytical model to fit to pure-component isotherm data adsorption isotherm

pressure_key = None
name of column in df that contains pressure

print_params()
Print identified model parameters

spreading_pressure(pressure)
Calculate reduced spreading pressure at a bulk gas pressure P.

The reduced spreading pressure is an integral involving the isotherm 𝐿(𝑃):

Π(𝑝) =

∫︁ 𝑝

0

𝐿(𝑝)

𝑝
𝑑𝑝,

which is computed analytically, as a function of the model isotherm parameters.

Parameters pressure – float pressure (in corresponding units as df in instantiation)

Returns spreading pressure, Π

Return type Float

18 Chapter 6. Class documentation and details

http://docs.scipy.org/doc/scipy/reference/optimize.html#module-scipy.optimize

pyIAST Documentation, Release 0.0.0

class isotherms.InterpolatorIsotherm(df, loading_key=None, pressure_key=None,
fill_value=None)

Interpolator isotherm object to store pure-component adsorption isotherm.

Here, the isotherm is characterized by linear interpolation of data.

Loading = 0.0 at pressure = 0.0 is enforced here automatically for interpolation at low pressures.

Default for extrapolating isotherm beyond highest pressure in available data is to throw an exception. Pass a
value for fill_value in instantiation to extrapolate loading as fill_value.

__init__(df, loading_key=None, pressure_key=None, fill_value=None)
Instantiation. InterpolatorIsotherm is instantiated by passing it the pure-component adsorption isotherm
data in the form of a Pandas DataFrame.

Linear interpolation done with interp1d function in Scipy.

e.g. to extrapolate loading beyond highest pressure point as 100.0, pass fill_value=100.0.

Parameters

• df – DataFrame adsorption isotherm data

• loading_key – String key for loading column in df

• pressure_key – String key for pressure column in df

• fill_value – Float value of loading to assume when an attempt is made to interpolate
at a pressure greater than the largest pressure observed in the data

Returns self

Return type InterpolatorIsotherm

df = None
Pandas DataFrame on which isotherm was fit

fill_value = None
value of loading to assume beyond highest pressure in the data

loading(pressure)
Linearly interpolate isotherm to compute loading at pressure P.

Parameters pressure – float pressure (in corresponding units as df in instantiation)

Returns predicted loading at pressure P (in corresponding units as df in instantiation)

Return type Float or Array

loading_key = None
name of loading column

pressure_key = None
name of pressure column

spreading_pressure(pressure)
Calculate reduced spreading pressure at a bulk gas pressure P. (see Tarafder eqn 4)

Use numerical quadrature on isotherm data points to compute the reduced spreading pressure via the
integral:

Π(𝑝) =

∫︁ 𝑝

0

𝑞(𝑝)

𝑝
𝑑𝑝.

In this integral, the isotherm 𝑞(𝑝) is represented by a linear interpolation of the data.

19

pyIAST Documentation, Release 0.0.0

See C. Simon, B. Smit, M. Haranczyk. pyIAST: Ideal Adsorbed Solution Theory (IAST) Python Package.
Computer Physics Communications.

Parameters pressure – float pressure (in corresponding units as df in instantiation)

Returns spreading pressure, Π

Return type Float

isotherms.plot_isotherm(isotherm, withfit=True, xlogscale=False, ylogscale=False, pres-
sure=None)

Plot isotherm data and fit using Matplotlib.

Parameters

• isotherm – pyIAST isotherm object

• withfit – Bool plot fit as well

• pressure – numpy.array optional pressure array to pass for plotting

• xlogscale – Bool log-scale on x-axis

• ylogscale – Bool log-scale on y-axis

class isotherms.LangmuirIsotherm(*args, **kwargs)
Depreciated LangmuirIsotherm, consolidated into ModelIsotherm

class isotherms.SipsIsotherm(*args, **kwargs)
Depreciated SipsIsotherm. We shouldn’t use this anyway since it does not obey Henry’s law at low coverage.

class isotherms.QuadraticIsotherm(*args, **kwargs)
Depreciated QuadraticIsotherm, consolidated into ModelIsotherm

isotherms.plot_isotherm(isotherm, withfit=True, xlogscale=False, ylogscale=False, pres-
sure=None)

Plot isotherm data and fit using Matplotlib.

Parameters

• isotherm – pyIAST isotherm object

• withfit – Bool plot fit as well

• pressure – numpy.array optional pressure array to pass for plotting

• xlogscale – Bool log-scale on x-axis

• ylogscale – Bool log-scale on y-axis

This module performs the heart of the IAST calculations, given the pure-component adsorption isotherm models from
the isotherms module.

pyiast.iast(partial_pressures, isotherms, verboseflag=False, warningoff=False, ad-
sorbed_mole_fraction_guess=None)

Perform IAST calculation to predict multi-component adsorption isotherm from pure component adsorption
isotherms.

The material is now in equilibrium with a mixture of gases with partial pressures in the array partial_pressures
in units corresponding to those passed in the list of isotherms.

Pass a list of pure-component adsorption isotherms isotherms.

Parameters

• partial_pressures – Array or list partial pressures of gas components, e.g. [5.0, 10.0]
(bar)

20 Chapter 6. Class documentation and details

pyIAST Documentation, Release 0.0.0

• isotherms – list pure-component adsorption isotherms. e.g. [methane_isotherm,
ethane_isotherm]

• verboseflag – Bool print off a lot of information

• warningoff – Bool when False, warnings will print when the IAST calculation result re-
quired extrapolation of the pure-component adsorption isotherm beyond the highest pressure
in the data

• adsorbed_mole_fraction_guess – Array or List, starting guesses for adsorbed
phase mole fractions that pyiast.iast solves for

Returns loadings: predicted uptakes of each component

Return type Array

pyiast.print_selectivity(component_loadings, partial_pressures)
Calculate selectivity as a function of component loadings and bulk gas pressures

Parameters

• component_loadings – numpy array of component loadings

• partial_pressures – partial pressures of components

pyiast.reverse_iast(adsorbed_mole_fractions, total_pressure, isotherms, verboseflag=False,
warningoff=False, gas_mole_fraction_guess=None)

Perform reverse IAST to predict gas phase composition at total pressure total_pressure that will yield adsorbed
mole fractions adsorbed_mole_fractions.

Pass a list of pure-component adsorption isotherms isotherms.

Parameters

• adsorbed_mole_fractions – Array desired adsorbed mole fractions, e.g. [.5, .5]

• total_pressure – Float total bulk gas pressure

• isotherms – list of pure-component adsorption isotherms. e.g. [ethane_isotherm,
methane_isotherm]

• verboseflag – Bool print stuff

• warningoff – Bool when False, warnings will print when the IAST calculation result re-
quired extrapolation of the pure-component adsorption isotherm beyond the highest pressure
in the data

• gas_mole_fraction_guess – Array or List, starting guesses for gas phase mole frac-
tions that pyiast.reverse_iast solves for

Returns gas_mole_fractions, loadings: bulk gas mole fractions that yield

desired adsorbed mole fractions adsorbed_mole_fractions at total_pressure, adsorbed component loadings ac-
cording to reverse IAST :rtype: Array, Array

21

pyIAST Documentation, Release 0.0.0

22 Chapter 6. Class documentation and details

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

23

pyIAST Documentation, Release 0.0.0

24 Chapter 7. Indices and tables

Python Module Index

i
isotherms, 17

p
pyiast, 20

25

pyIAST Documentation, Release 0.0.0

26 Python Module Index

Index

Symbols
__init__() (isotherms.InterpolatorIsotherm method), 19
__init__() (isotherms.ModelIsotherm method), 17

D
df (isotherms.InterpolatorIsotherm attribute), 19
df (isotherms.ModelIsotherm attribute), 18

F
fill_value (isotherms.InterpolatorIsotherm attribute), 19

I
iast() (in module pyiast), 20
InterpolatorIsotherm (class in isotherms), 18
isotherms (module), 17

L
LangmuirIsotherm (class in isotherms), 20
loading() (isotherms.InterpolatorIsotherm method), 19
loading() (isotherms.ModelIsotherm method), 18
loading_key (isotherms.InterpolatorIsotherm attribute),

19
loading_key (isotherms.ModelIsotherm attribute), 18

M
model (isotherms.ModelIsotherm attribute), 18
ModelIsotherm (class in isotherms), 17

P
plot_isotherm() (in module isotherms), 20
pressure_key (isotherms.InterpolatorIsotherm attribute),

19
pressure_key (isotherms.ModelIsotherm attribute), 18
print_params() (isotherms.ModelIsotherm method), 18
print_selectivity() (in module pyiast), 21
pyiast (module), 20

Q
QuadraticIsotherm (class in isotherms), 20

R
reverse_iast() (in module pyiast), 21

S
SipsIsotherm (class in isotherms), 20
spreading_pressure() (isotherms.InterpolatorIsotherm

method), 19
spreading_pressure() (isotherms.ModelIsotherm method),

18

27

	Installation
	New to Python?
	pyIAST tutorial
	Import the pure-component isotherm data
	Construct pure-component isotherm objects
	Peform an IAST calculation
	Reverse IAST calculation

	Theory
	Tests
	Methane/ethane mixture test
	Isotherm fitting tests
	Competitive Langmuir adsorption

	Class documentation and details
	Indices and tables
	Python Module Index

